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1. CHARACTERISTIC DHTERENT IAL EQUATIONS

The Mff erential equations for the rotaticmally symmetric potential
flows read

() U2

()
l- —zz-2~rz+ l-=(pm+k=o

a2 a2 a2 r

if one starts from the velocity potential 9, and

M one uses the stream function V (see chapter 1, equations (21)
and (19)). Therein the velocity component in z tirection is

the velocity ccmrponentin r-&Lrection

v= q)r=-(l+-+m-z
r

(1)

“(2)

(3a)

(3b)

* ‘kotationssymmetrischeE’otentialstr8mungen”(Kapitel IV),
Techniscbe Hoschschule Dresden, Archiv Nr. 44/4 November 18, 1940.

●



2 NACA TM 1244

while for the sonic velocity a in the selected non-dimensional
representation

(4)

applies. q was the smount of the velocity, thus ~~.

In setting up the characteristic differential equations one starte
best from (1), since the derivation then is somewhat facilitated. Later
on, it is true, titerest will be concentrated on the stream
lines * = const., not on the potential lines q . const; however, for
potential flows the quantities cp or $ enter only into the last
characteristic differential equations whereae those treated first are
completely free of q) or ~ and contain, aside from the independent
variables, only U md
than by

The
~ 1242)

$“

characteristic
is

v. u and v are more simply expressed by q

condition (c)f.chapter II, equation (8), NACA

(5)

If one now introduces the angle o of the stream line and the symmetry
axis (z-axis) of the flow, one obtains

u. q cost

Due to the rotational symmetry,
if reverse flows ewe excluded.

v= qsina (6)

0 may be assumed between O end K/2j

Then the characteristic condition turns into

(+ - q2cos23)r2 + 2q2sin flcos tifi+ (a2 - q2sin20)i2 s O (7)

?

m
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✎

=, the slopeTwo roots h’ and h“ result from this relation for
dz

of the characteristic base curves with respect to the z-axis:

L’=

h“=

As differential equaticm
curves there results

for the second famil.y

(see

q%n 0 Cos a - 8C
q2cos24 - a2

(8a)

● (8b)

chapter II, equations

for the first family of characteristic base

For titerpretation of

dv -)”’dz.o (ga)

dv -~ftdz=o ($lb)

(28a), (*ga), IW3ATM1242).

these relations (ga) end (gb) - rather
com@icated du= to the form of X’ and L“ -it
the-equivalent statement (7). For we latter one

+ycos%% - 2 sin d Cos d i< + si31*d

or, with introduction of Wferentials,

2(COS~ dv - SiIl~ dZ)
, d# + &*

is best to startfrom
may write

a2(f2 + k2)

(lo)

Then there is on the left side the square of the vector product of the

unit vectors (COS “9,sin$) and
( )
~&, ~~, which are

tangent to the stream line or the characteristic base curve, respectively.

I

●
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If one denotes the ,anglebetween stream
curve by a, (10) therefore states that

NACATM 124k

he end.characteristic base

(11)

This, however, is rmthtig else but the well-known Mach relation: a is
the Mach angle between stream lines and Mach waves which are accordingly
recognized as being identical with the characteristic base curves.

Hence the interpretation of the equations (ga) and (gb) results
directly. The positive z direction is assumed to be in the direction
of the mean flow. Noting the sigus of the roots in the expressions
for Af and k“ one then finds that the first family of characteristic

base curves (ga) forms with the stream lines the Mach angle a= arcsin~

to the left, looking in flow direction; the second family of character-
istic base curves forms the same angle to the ri@rb.

The first famll.y
be designated a;
Mach wa{es. The

of characteristic base curves in our specificationmay
left-hand Mach waves, the secoDd family as ripkt-hand
second characteristic equation of the first fami.lvof.

characteristics h the form (chapter II, 28 b, NACA TM 1242) reads in our
case:

(1-$}, du+&-$)dv+;dr=() (U?)

If one takes into consideration that in the expression (8a) for h! the

denominator is q2co~2d - a2 = u2 - a2, there results from (E) after
multiplication by a end consideration of (6):

( d x )
-q2sinticos79+aq2- a2 costidq-s~oqd$

(+.a2 -
). )

q2sin20 (sin ~ dq + cos ~q da + a2q sinfl ~. O
r
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or, after the multiplication of the hrackelm has been carried out and the
term have been rearranged,

+a2qsin$QZ=0
r

or

.
If one nowpresuyposee that

one may divide the equation (3.3) by this e~ression and obtati

11,-lE2iEdq+ ~-.o
aq -r

cot 4 + a

Using the Mach angle, one may e&ate in (15)

- cot ~—=
a

(13)

(14)

(15)
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Accordingly, one has for the second family of

NACA,TM 1244

characteristics

da+!k&kdq+
aq

with the presupposition

1 dro—=
r

(17)

What is the significance of the cases excluded by (14) and (18),
respectively? If, for instance, (18) does not apply, one obtains o . cc.
Since the stream line forms with the z-axis the angle f, with the
characteristic base curve the angle cc,the respective characteristic
base curve then becomes parallel to the z-axis; thus one has on it at
this point dr = O, the last term in (17) would assume the indefinite
form ~ x 0.

One may avoid these difficulties completely by using instead of
the differmtial dr in (15) and (17) the tiferential ds, the arc
element of the characteristic base curves. Using dz, which suggests
itself would, h contrast, only shift the difficulty elsewhere.

If in the differential equation (15) pertainingto the first family
~ is designated by R’, it is thereforeof characteristics the factor
r

to be equated

R!dr_sl& (19)
r ~

tith precisely the expression S’ to be determined. If one denotes the
angle of the first family of characteristic base curves and the z-axim
by P’, there is dr = sin p’ ds. On the other hand, the sloye of this
characteristic base curve was given by k’ according to (8e),

thus tan13’= k’. Therewith dr becomes & = “ tij thus, since

l==
there shall be R’ dr = S’ ds,

(20)
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NACA TM

After a few transfommtions one obtatis

w~=. asind+mcos$

q2COS2d - a2

and finally
●

s’ ==sini3=sinasin79
~

Correspondhgly

(21)

The sims are selected so that, in agreement with the geometrical

derivation above,

&

A =Sinp” (j3‘‘ angle of the second family

of characteristic base curves with the z-axis). Therewith S ‘‘ finall.y
becomes

Sll = -Ssjnfl. -sin asin a (22)
~

Thus one obtains without w distinctions of cases as second
characteristic equation for the first family:

dO -cota Q +Sin$sina$=o (23)
~

and for the second family:

(24)

.
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Only this simplification of the characteristic differential equations
enabled us to perfom the calculation of rotationally syumotric .
potential flom with tolerable calculaticm expenditure. To our lmowledge,
no indication of the possibility of such a simplification is to be found
in the suggestions of other authors (Frankl,Ferrarl) concerning the
calculation of rotationally synmetric potential flows~o

,.

2. TREATMENT OF I!RACTICAL13XAMl?lXS

For the calculation of practical examples, two methods are at
disposal for the approximate solution of the characteristic differential
equation system, as was Mscussed in more detail in chapter II, 7,
NACATM 1242; we decided for the “fieldmet~od” (chapter 11, p. 16, NACA
TM1242, p. 16). If one progresses from already known fields to new
ones, the equations (cf. chapter II, formula (49), p. 23, TM 1242, p. 242)

%AI ‘(%I - %) + CII @III - ‘I)+ ‘I@II - yI) = 0 (25a)

are used, which result from the folloting characteristic differential
equations (11, (28), (29), p. 14, !lld1242, p. 15):

AA~dp+Cdq+Ddy=O (26a)

AA’’ dp+Cdq+Ddy=O (26b)

with h’ si~ifying the slope of the first family of characteristic base
curves, k“ signifying the slope of the second family of characteristic
base curves; the differentials are approximately re@aced by finite
differences (and differences of second and higher order then neglected)

1
As noted afterwards, for once the arc element of the character-

istic base curves has been introduced into the characteristic differ-
ential equations from a purely mathematical side: (E. Kanike’s
‘!llifferentialgleichungenreeller l?unktionen,”(Differential equations of
real functions), kipzig 1.930,p. 389 (9)). We reserve for a later time
looking into a
characteristic

2From now
reference, for

possible connection of Kemkets e~ressions of the
differential equations with ours.

on, these references will be abbreviated; for this 1’
instance, we shall write: II (49), p. 23, TItiU42, p. 24. ,

.
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as has been described h detail before
TM X242 p. 16ff. andp. 23 ff.) I ma

9

(II, p. 16 #. and p. 22 ff. etg.,
11 signify the numbers of the

fields with alxeady known appro-te values of p and g, whereas III
denotes the adJotitig field for which these approbate values are to
be determined..

The relations (25), derived from the quite general form of a
quasiltiear differential equation of the second order (II, l(l), p. 2,
TM 1242, p. 1) are nowto be given for a special use in adjustment to
the flow type of importance.

For the rotationally symmetric potential flow there correspond to

the two equation (26) accordtig to (23) end (24) the pair of equations
(second
of base

characteristic equa~io= for the first and for-the second.family
curves)

dfl- Cotay+sintstia- .0 (27a)
r

e

h addition, the Mach relation (first characteristic equation)

sina=~ (28)
~

is used. Therein a was the local sonic velocity, q the amount of
velocity, ~ the angle of the stream line and the symetry axis (z-ax s),

3cz the Mach angle between stream lines and characteristic base curves ~
r the distance of a point from the z-axis.

Within the scope of our approximation principle we write for (27a)
and (27b) in analogy to (25a) and (25b) - putttng for abbreviation

—=U=QVcOt av

~~ a@v
(29)

3Cf. remarkon p. 4
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and
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Bint9vsin~=~ (v = 1, 11) (30)

$~~ - $1 - ‘III - SI
Q1@lll - qr) + S1 ~1 = O (31a)

(progressing along a left-hand famil.ywith the angle # + a toward
the z axis) and

%X (
- ~1- + QI1 qlII - !@ - q~ ‘~II;ls*

respectively (progresstig along a right-hand family with

= o (31b)

the
angle 19- a toward the z - axis); S111- Sv simplysignifies the

distance of the field cent%rs III and v from each other.

Follo~g the formulas required are given; they are to be used
in connection tith the schemes given by figure 1,.

From the two hear equations (31) q~ (and therewith, according

to (28), also -1) m“d ~ for the unknown field III are easily

found. The elimination of ~~ from (31a) and (31b) first yields

by

or

of
be

-L -LJ.

insertion of 9.111 into (31a) or (31b) then results

‘III ‘aI

%11 = ‘%1 “

the two formulas (33)
useful for control of

(334

(33b)

one is, of course, superfluous; however, it may
the calculation.
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The relations (32) and (33) are app~ed in the standard case
(cf. fig. la), where one deals tith inner fields only; if, on the other
hand, one reaches, in progressing, the fixed boundary (case of fig. lb
ana lc respectively), where o is prescribed by the boundary condi-

- tion 4~, one has, according to (31), the simpler formulas

Q1

and

s-fj--J

‘IIqII + ‘II
- ‘KC + ~11’

‘II - ‘%11
(case lc) (34b)

%.
LA.

Coriditionsat the boundary of a free Jet are quite analogous.
Only O is now not prescribed but, on the contrary, to be determined
whereas pressure and therewith the amount of velocity q

Y
e lmnn.

The solution of (31a) and (31b) with respect to ‘9 yields , for given q

‘III - ‘I$111 ‘aI + QI(~III )%‘ql- (case lb) (35a)
VI

and

( ) ‘nflj ‘1 (case lc)‘%11 = %1 - ’11 %1 - % + ‘II (35b)

respectively

The formulas so far refer - as will.generally be the case - to
progresstig in flow direction. Now and then, however, (cf. our procedure
in the second example, section 4) it is aMo required to follow the flow
rearward and one then has the conditions sketched in figure 2.

%X necesssry, one assumes the boundary approximated by series of
straight lines 3 . const.

5A pectiarity here experienced in the detezmdnation of the field
center will be treated h detail in the &Lscussion of our second
example.
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corresponding formulaa naturally follow directly from the
former ones, one only has to replace the progressing from field I to
field 111 -by that from III ‘ to 11 ‘ and, in analogy, the progressing
from II to ISI by that from 111’ to I‘. Solut~on of the new
equations with respect to q~I 1 and d~I I results in ‘

s~ f - s~II t

QIIqlt+Qn IqllI -~lt r_J1 ‘% ‘ ‘ll’r~l~=l ‘- ‘II ‘ + ‘I’
a-d =‘ALL

and

Q1t +Q1lr

4
III’ = fll,+Q1,(~t - ~llr) ‘SII

4‘m ‘ = 11” - QII’(%1’- ~~~t+sll,)
respectively;

(case 2a);

%’ -%11’
rI t

‘II ‘ - ‘III‘
rH I

(36]

(37a)

(37b)

SI t - ‘III‘
Q1lqlt -S1! ~ , -~l,+fl~!

Q11
~ ‘inI‘ = ‘boundary

(38a)

(case 2b);

- % + ‘%11’

.LJ.

(case 2c).

%1 ‘ = abomiary

(38b)

b
For the free Jet formulas for the progresstig uystream were not

required and therefore not derived.

.

.

r

.
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‘)

Furthermore,
important for the

13

knowledge of the folJowing two additional remarks is
application of the formulas shove.

1. For the rotationally symmetric flow it is sufficient to construct
for a longitudinal Gection the flow pattern above the z-axia O . 0
(which may be interpreted as boundary), since the,course below this
axis is simply obtained by reflection on it. However, if one wants to
calculate this course separately - for instance for purposes of control -,
one must take into caasideration that one is now dealing with a left-
hand Cartesian z-r systam. This is taken into account by provitig in
the formulas the quantities rv - in themselves, according to definition,
positive - with the negative sign.

2. If one uses in the formulas a field center V lying on the
eyuunetryaxis 3 = O, thdre becomes for it ~ = O and simultane-

% - S*
ously rv = O; the expression SV then assumes an indefinite form.

rv
In this case the significant expression is simply to be omitted, since

there results Mm E . 0, for the follotig reasons: Along the stream
r+Or

line 3 = O there is v = O and, for reasons of

also ~=0. Thus one has, since v . q sin 8:

0 doq-;fn .lg+ q Cos dg
‘* and consequently — .

m
one may ‘writefor small values A+ ad L& ~.

r

S-try, obviously

O for r = O. Now

sin aXsinil~sfna ‘Q.
r &

For transition to the limit &+O there results, because of ~. O,
dr

also rl+q:=o.

Moreover, the following has to be said in general for practical
application of our method. 1+ will be useful-to represent, before
starting the calculation proper, the values of Q and a as functions

‘(l - q’) and (29) forof q by means of the relations (4) a2 = ~~

r
- 1 <q =1; of course, this has to be done forthe interval a2 = -=

K+l
every a value sep&-ately. For thi~ purpose a table was set up which
indicates the Q values and CL values for q steps of 0.02; for the
intermediate values linear interpolation which is easily perfomned is
sufficient. It was shown for the used ~-values (tc4 1.405; K = 1.18)
that for the chiefly tiportagt q domain (if q does not approach the
unit too closely) Q may be practically regarded as linear function
of q. The two tables for ~= 1.405 and IC= 1.18 on which the
calculation of our examples is based are added at the end (pp. 26 and 27).
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The quantity S, on the other hand, is detemained fram case to
caae. Its calculation may be performed ve~ simply by slide rule

according to (30), all the more so since the factor “ whichSins==
!L

appears as intermediate quantity in the calculation required for the
setting UT of the table may be taken directly fra that table.

For the rest, it will be noted in using our formulas that cerbain
combinations of quantities occur repeatedly, which means a saving in
calculation expenditure.

The calculation and construction of the field III - which for us
is to be representative for all fields newly to be determined (cf.
fig. 1) - is performed as follows: f~stl qln and t91m are deter-

mined according to the respective formulas, with the quantities denoting
length S1ll - SV and rv to be taken from the drawing (its scale ia

of no importance stice only the quotient of those lengths enters into
the calculation). The table yields the pertaining values of Q1ll

and ~, and tith the aid of 0111 one can ftid S1ll. (It has to

be noted that Q and S in themselves are auxiliary calculation
quantities which are reqtired only for the continuation of the proce-
dure.) There follows a geometrical process, the closing of field 111
which requires lmowledge of the Mach angle ~~ and of the stream
line angle tilll. At the corner point 1 (cf. fig. la) the

angle ~~1”+ ~1, at the corner point 2 the angle ti~l - ~- is

subtended by the horizontal ( I[ z-axis) and the legs of both angles are
made to intersect at the desired corner point 3. Since thereby,
naturally, a certain moment of inaccuracy (aside from the errors caused
by the approxbnation principle) enterB, the position of the corner
point 3 was occasionally checked
(II (42), p. la TM 1242, p. 20)

‘3 -rl=

‘3 -r2=

or, solved tit.hrespect to

(‘3 -

(‘3 -

analytically by

‘1) x t:(’111

‘2) x ‘m (’~~

means of the equations
.
-

+ ~1
)1

‘%1) \
.

(39)

the coordinates =s9 rs~

.

-,

r

.
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After this general representation of our conibined
grayhical ~thod we now turn to the description of the
that have been carried out.

calculative-
special examyles

3. FIRST EKAMPIE: DIFFUSER

This example which we selected ourselves and tiich represents the
first attempt of application of our method, deals tith the flow of
air(~= 1.405) through a conical nozzle of the half opening angle 6°
according to figure 3, which shows a longitudinal section. As initial
condition we assumed q in this longitutial section on a circular arc
(the apex of the cone is the center of the circle), to be as constant
throughout, equal 0.59, (the pertatiing Mach angle is 38° 2’)j O results
from the fact that the stream lines must intersect this circular arc
radially. The distribution of the fields is here selected still
relatively roughly (ti step of about 4° in r tiection): field corners
on the circular arc at 0 .Oandti= A4°, thus field centers
at 0=*2° and a= i6° (boun~), as can be seen ~con figure 3.
Also, the method was extended only bo the construction of a few fields
since no peculiarities a~pear.

The construction in general has already been described h detail;.
supplementary information is needed only about the determination of the
field centers. For inner fields one finds the new field center III
(cf. fig. la) as centeY of the diagonal ~- of the corners 1 and 2 of the.
lmown fields I and II. At the boundary the procedure is as follows
(cf. fig. lb and,_aalogously, fig. lc): the parallel to the character-
istic base curve X2 of the field I is made to intersect with the
boundary line, and the intersection point is defined as fiel& “center”
of the half-field III.

The ratio of the prevailing pressure p to the tads pressure PO
(that is, the pressure for which the flow velocity equals zero) has been
plotted into the individual fields. This ratio results, according to I,
2, from the respective q according to the equation

R

:= (l+)K-l (40)

Furthermore, a number of strea ties me ~s-~; ~eY ~re selected
according to the ‘principlethat b every stream tube the same mass
transport takes place per unit time. These stream M.nes are attatied by ,

progresstig by equal amounts @, starting from ~ = O. Their position
is fixed in the “followingmanner.



The point tich was taken
stream line 8 . 0 is assumed

. NACATM 1244

in figure 3 as starting point of the
to be the origin of our z-r coordinate

system. One now searches along z = O for %e
points through which the stream lines must pass.
has, if the first equation (16) of chapter I, p.
difference equation,

~
2 K-lb,A$~rqcosfl(l-q)

%Pfk

Accor’tig to the Simpson rule7

r ordinate of the ‘
For constant z one
9 Is written as

(41)

(42)

was numericaU.y determined (which requires setting up of a table for a
number of r values and of the pertaining values

A~=9bondary - ~.
n

was then found, with n signifying the nuciberof

of 2) and

(43)

stream lines to be
plotted (in the present case n-= 6). Insertion of A$ in (41) then
yields the n different Air by which one must progress along z = O,
starting from r . 0. It is practical to proceed fran the boundary:
one titroduces P(r =

%OUtiy) into (41) ~d th~ obtains %r= Then
one determines by interpolation from the table the P value pertaining

‘0 %olnxh?y - Alr and inserts it agati in (41), thus obtaining @r.

The same procedure is perfozmed for P = l?(%om~ - Alr - ~r) and
$

yields A3r, etc. Naturally one must not expect ~~1 A$r to become now

exact~ equal to rbo~d~y~ since ffrst, always a too large P waB

used and, second, P was regarded as constant for the entire (finite)
interval &. Within the scope of graphical accuracy, however, it
proved sufficient to plot now r against A*, to alter the curve drawn
through the ri (i = 1, 2, . . ., n) so that it passes exactly
throu~ r = O for n AV = ~boinlary - $0 (~imific~t correction!),
and to use the new coordination from the r-A$ dia~am. Besides, one
may also, as a proof, proceed inversely starting from r = Oj one then
obtains too large values for &, whereas those found according to the
first method were too small..

70f cowse, another stitable q,uadratue formula could have been
selected just as well. ‘

r

.
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.

The stream lines start at the angle 19 given by
condition (the sli@t difference betweem the circular
rectilinear section z . 0 could be neglected); when

the initial
axc and the
they reach the

field.boundary. they are continued at we new &cl&nation- coordinated
to the adjo=g fi&ld end thus result in the broken lines shown in
figure 3.

4. SECOllDEXMEU!l: NOZ~

Here the flow of a gas with K = 1.18 through a nozze of pre-
scribed longitudinal Mmensi.ens, the shape of which in longitudinal
section is given h figure 4, was to be dete~ed. The nozzle is a
truncated circular cone with the wall angle 6°1Q’. The narrowest cross
section has a diameter of XL8 millimeters, the exit cross section, one
of 178 mi~im.eters. At the narrowest cross section the obtuse cone
starts with a slight - not further defined - curvature. The location
of transition is marked in our drawing. The tank pressure is 14 atmos-
pheres, the pressure in the exit cross section 1 atmosphere. The
determination of the curve result necessarily in our procedure which
conforms to a report of Th. Meye3 and till be described in detail
below.

In the surroundings of the narrowest nozzle cross sectio~ where
the flow velocity is near critical velocity, our method is not yet
usable in practice (and this applies to the supersonic region, also),
because the Mach angle a sti~ differs too little from 90° and the
fields thus become much too narrowto allow even a tolerably rapid
progress in the construction of the flow pattern. For this reason we
apply our method only at a sufficient Ustsnce from the narrowest cross
section (naturally making our arrangements so that we need oyerate only
with the rectilinear boundary); it is true that initial conditions
for q and o for the start then mu@ be obtained by another method.

This latter, accortig to Th. Meyer, consists in assuming at the
potnt of the z axis where sonic velocity is passed as origin of the
coordinate system a series development with respect to the two
coordinates z ~a r for the velocity potential q. It is pre-
supposed that h the proximity of the origin the ftist series terms
already give a good approximation; proof of this wild.be given later
(cf. P. 23). The coefficients of this development result by insertion
of the series into the differential equaticm for q) (I (21), p. l!2)

%eyer, Th.: tier zweiUmensionale I%wegungsvorg&nge in einen Gas,
das mit Uberschallgeschwindigkeit strbmt. Diss. C%ttingen 1907,
pu%lished - in Mitteilungen i.iberForsch.- Arb. ing.-Wes. Heft 62,
Berlin 1908.
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and subsequent comparison of coefficients. However, certain coeffi-
cients remain arbitrary as long as no further conditions are added. The
first condition is obviously that the flow should be synmetrical to
the z axi~ that is, v must not contain other than odd ~owers of r
or q) other than even powers of r. AS second condition Meyer intro-
duces the assumption (well confirmed by t=of a linear velocity
increase along the z
s

axis (tith the critical sonic velocity at the

A priori, another method of determining the coefficients would be
more readily apparent: ,it is’the method used by G. 1. Taylor. Taylor9

and with him S. G. Hooke# who transferred Taylor’s method to the
three-~ensional case of a nozzle of circular cross section, do not
have Meyer’s second condition but prescribed for their calculations a
certain nozzle with circular-arc boundary. The boundary conditims
then yielded the lacking qualifying equationq for the coefficients.
However, it becomes evident that in this case the detemnimtion of the
coefficients becomes more complicated than according to Meyer’s method,
quite aside from the fact tiat the latter method is better adapted to
our statement of the problem where the form of the boundary is not
accurately fixed. Moreover, the results of T. E. Stanton’sU measure-
ments on the nozzle selected by Hooker confirms the usefulness of
Meyer’s assumption (see above), that is, one obtahs in this manner
reasonable nozzle shapes.

If one denotes all quantities made non-dimensional by a dash above
them and refers the velocity to the critical sonic velocity a*, Meyer’s
second condition reads:

{
‘u= 1+; (44)

‘Taylor, G. 1.: The I’lowof Air at High Speeds past Curved
Surfaces. Aeronautical Research CcmunitteeReports and Memoranda
No. 1381.,London 1930.

%ooker, S. C.: Thel?lowof a Compressible Liquid in the Nei@-
bourhood of the Throat of a Constriction in a Circular Wind Channel.
J2roc.roy. Sot. Imsdon A, Bd. 135 (1932), J?p.498-5U.

Cf. also G6rtler, H.: Zum fiergang von Untershalh zuUber-
schal.lgeschtidigkeitenin Di.isen.Zeitsch. f. augew. Math. Mech.
Bd. 19, Nr. 6, Lez. 1939.

%tanton, T. E.: Velocity in a Wtid Channel Throat. Aero-
nautical Research Reports and Memoranda No. 1388, London 1931.

.
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The stieam lines satisfy the relation

(45)

with ~ expressed as power serieg”in =, the coefficients of which are .
to be dete?mdned according

If one proceeds up to
for the velocity potential.
into consideration

to (45).

terms of the fourth order, the expression
becomes - with the first contition taken

–2 –4 +b4E2–$ + C4F4 + . . .;T’ alz + a2z + c@2 + a3Z3 + b3Z$ + a4z
.

. (46)

because of the second condition one-has al = 1, ~ = ~, a3 = a4 = O,
2

consequently (46) may be replaced by

~=~+$~ + c& + b3z+

the simpler fom

+b4Z%%+c4F4+ . . . (47)

with the four unknown coefficients ~, b3, b4, C4.- Hence results
#

F
E= = l+Z+b3~+2b4@+. . . (48a)

z

F7=-= 2c@ + 2b3ZF + 2b4E2F + 4c4F3 + . . . (48b)
r

1
Insertion into the differential equation I (21)

with

( +)#_tt-1 l--#--
2 a~

.

.
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leads by comparison of the coefficients to the four equatimm:
.

(49.1)

b

(K -
{ }

1) 4b3 - 4aWb3 - 8aWc2 - (~ + 1) x 2aw .0 (49.2)

}
(K - 1) {4bk - 4aWb4 - 8awb3 - 4a~c2 - (~ + l)aw = O (49.3)

(x 2aeb4

They yield for the unkno%m

+ 2a%4 + 8c~b3)= o (49.4)

coefficients the values:

%2=0 (50.1)

b3 =
1

2(1 - a=)

C4 = 1

16(1 - aw)2

(50.2)

(50.3)

(50.4)

Id the equation of the stream line up to terms of fourth order
read

f =a+pz+7z2 + &–3 + GZ4 (51)

.

If one enters with (51) into (45), there follows according to (48):

p + 27Z + 38Z2 + 4653 =
2%F + 2b3zF + 2b4E2r + 4c4F3

(52) ‘
1 + z + b3~ + 2b4Z~

.
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If one inserts, moreover, on the right side of (52) the value
-“ of F from (51), the comparison of the”coefficients yfelds the

fol.lowingfour relations~:

P(1 + b3a2) = 4c4a3 (53.1)

27Q + b3c?)
( )= 2b3a + 12c4 - 2b4 a2~ - ~ - 2b3c@2 (53o2)

38~ + b3a2) = 2b3~ + 2b4a - 27 - b3133- 6b3a@7 -(4%4 - 12c~ x(@2 + a27)

(53.3)

4c(1 + b3a2) = 2b3y + 2b4~ - 38 - 8b3a@8 - 4b3(P27 + ay2)

(53●4) .

The quantity CL which indicates the ~ value (that is, hdf the
nozzle width) at the point (~ = O) where at the nozzle center the
critical sonic velocity a* yrevails, rema3ns, as an integration con-
stant, at first arbitrary. a wi~ then serve for the determination
of the scale which is used to make z ~d r non-dimensional.

We may now turn to the fi@ng of the curvilinear boundary section
near the narrowest cross section of our nozzle (cf. p. 15) which had so
far been left undeterm@ed. This curve section must be stream line and
must pass with continuous tangent into the rectilinear section with the
prescribed inclination of 6010’. Furthermore it must be observed that
agreement with the prescribed dhensions is matitahed and also that I
the z-interval is not exceeded (only within this z-titerval the

,,

admissibility of our series expression may be regarded as satisfied).
By trial an a value was determined tiich is coordinated to a stream
line suitable for our purpose.

The performance of the’numericel calculation yields for ~ = 1.18
according to (50):

b3 = 0.545 b4 = 0.3705 Ch = 0.0743

●

‘At ‘this opportunity, a group of ‘misprintsin Meyer’s repofi
should be pointed out. On p. 62 one must read in his corresponding
equations (always first term on the left side): ti (2), 27 instead
of Y, in (3), 35 instead of 8; in (k), 46 @tead of ~j in (~),

5~ instead of ~; in (6), 67 instead of q.
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For a we selected the value 0.5 (it should be noted that this
value must not be compared with Meyer’s a . O.~, Meyer having made his ‘
calculations for two-dimensional air flows with R . 1.405, but that
its correspon-g value in Meyer’s report - tith respect to the course
of the stream line - is probably about a = o .2). Then (53) yields:

P = 0.03265 7= 0.2258 6= -0.02677 “G = 0.0651

The equation of the boundary section ( = stream line) reads
therefore, according to (51):

r= 0.5 + 0.03265z + 0.2258z2 - 0.02677Z3 + 0.0651.E4 (51*)

From the condition

m = tan 6°m’ = 0.IJ381= 0.03265=
dz

results for the ~ at the junction

+ 0.4516%- 0.0803u2 + 0.m423

(in fig. hmarked on the boundary)

Zo = 0.2.695

TO this 20 pertains, according to (51*), the value

r. . 0●5119

= 0.5 corres~onds to the radius a% the entrance of our
nozzka r. = 59 millimeters; thus wemustmultiply the above values of ~

and ~ by ~= +18, in order to find from Meyer’s quantities the true

lengths in millimeters for our example.

If one inserts the nmnerical values of the coefficients in (47)
and (48), one obtains (a* . 0.287)

;=A=E+W
0.287 2

+ o.545#’ + 0.3705EW + o.0743fi4 (47*)

‘=*=
1+ z + o.545# +o.7410z# (48a*)

‘=*=
1.O$XIZZ+ 0.7410Z2F+ o.2g7F3 (48b*)

.

.

.

.

.
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With the aid of the equations (48*) one could finally, according
to the relations ‘

calculate along the rectilinear section = = ~. the initial values
of q and o which were requirements for our method.

The construction of the flow pattern in the interior of the nozzle
to its exit ~roceeds in analogy to the construction of the first example,
described before in detail; only the subdivision of the fields was now
selected finer than in that example. Finally it should be mentioned
that, starting from z = zo, we constructed the flow patteti also for
some length rearward and found the q values detemined according to
our method ta good agreement with the corresponding values resulttig
from the series developnentc

Figure 5 shows the gas flow after leavtig the nozzle for the case
of en external pressure of 1 atmosphere. Figure 5 is the direct
conttiuation of figure 4 and to be considered joined.to it at the right.
Stice it could be seen that the subdivision of the fields in the nozzle
interior was no longer fine enough for the construction of the free Jet,
it was made from new initial conditions for q end 8. These values
were obtained by interpolation from the course of q end 8(discon-
ttiuous due tmour approximation method) along the straight
line z = constant at the end of the nozzle.

The behavior of the jet depends on whether it enters, after
leaving the nozzle, a region of hi@er or lower pressure. ti our case”
the pressure at the boundary of the nozzle exit ~ found to be larger
than the external pressure; it is true that the pressure difference
proved to be only slight. Figure 5 indicates that ~alpo = 0.085j ‘

‘tice ~o = 14 atmospheres, there follows ya = 1.2 atmospheres. Thus

there results as difference: 1.2 atmospheres - 1 atmosphere = 0.2 atmos-
pheres. The boundary point forms the starting point of a rarefaction
wedge with the opening angle ~ - aa (Mm ~ sigdfying the Mach

angle pertaining to the internal pressure, ~ the Mach angle pertaining

to the external pressure) which extends into the interior of the Jet.
Here this angle was so small.(an ample half degree) that we could,
within the scope of graphical accuracy, regard the rarefaction wedge as
practically infinitely thin and coinciding with the characteristic base
curve starting at that “singular”point. Still, one can see clearly in
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figure 5 that

exceeding the

the stream Mnes

Cus’comaryamomt

Our construction deviates
we deal no longer with a fixed

NACA TM

along this curve eqerience~a break

caused by the approximation13 ●

1244

from the foregoing due to the fact that
boundary but with a free boundary to be

detemuined, with the ~ pertaintig according to (kO) to the e~ernal
pressure prescribed as boundary contition. ??irst,the conttiuation of
the straight boundary line (0 . 6010’) at the stigular boundary point
has to be dete-ed, which is done in principle by formula (35a).
However, both field centers I and III now coincide, precisely at
the boundary petit; consequently U becomes zero, and the third term
of the sum at right is el~ated. Since we may, as was mentioned
before, -sume Q in the titerval h question q+ . . . q. as linear
function of q, fla ~ be fo~d
difference calculation according
process:

with Q = aq + ~(a, p constants

from ‘0 = 6°10T’ withou~”step-by-step
to (35a\ directly by an integration

[

~a
+ Q dq (52)

~f

which can easily be determined from

the established table (cf. p. 26)).

If one wants to proceed further along the boundary, a new principle
must be introduced for the geometrical detemdnation of the field center
on the boundary, stice the one indicated for the fixed boundary now
fails to work. I& the field I be lmown (cf. fig. 6). ~oint III is
then fixed by elongating the line that so far formed the boundary (the
first time the direction is given by s calculated accordtig to (’52))
beyond the co_mer point I and having”!?tintersect with the parallel to
the ’section23. One now lets the new direction fl~ found by calcu-

lation from (35a) start at III. The boundary stream line of the free
Jet therefore undergoes the (discontinuous)variation in its direction
in the field center, in contrast to the inner stream lines where this
variation takes ylace along the field boundaries.

We had actually intended to pursue the course of the jet until we
had efiibited the periodicity in the expansion-contractionprocess.
However, having progressed (on the outside) by about the length of the
nozzle, we were forced to break off our procedure by an incident the

13This deflection in itself takes @ace (in continuous transition)
in the interior of the wedge end must be constructed (subdivision
of~-aa into a number of &-steps).

.

.

.
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interpretation of which shall be postponed for the moment. It was found
that two adjacent characteristics intersected (the point of intersection
is outside of the range of fig. 5; however, the two curves in question
are easily recognized). The problem arises whether we have to deal here
only with an apparent singularity - caused by the inaccuracy of the ~
,approximation- or whether actually a compression shock occurs, although
only a weak one. The latter is probable since we constructed the sec-
tion of the free Jet given by figure 5 twice and found in both cases an
intersection of two adjacent characteristics;moreover, on the basis of
our tests made in this direction one cannot reject the supposition that
the same phenomenon will repeat itself at other points later.

As a conclusion it shoul.dbe mentioned with regard to the second
exsmple that the ratio p/p. again, as in the first example, was
written into the individual.fields (cf. p..1~) and that the 24 stream
lines have been selected according to the s~e yrticiple.

Translation by
Mary L. Mahler
National Advisory Conmittee
for Aeronautics
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APPENDlx

.
TABLE I

SONIC VEIOCITY a, =, AUMXURY QUANTITY
~

CM’CMCULATION Q

AND MACE ANGLE a AS FUNCTIONSOF TEE VEUXXTY AM3UNT q

!t
——

0.4U
.43
.45
.47
.49

.51
“53
●55
“57 ‘
●59

.61

.63

.65

.67

.69

.71
“73
●75
“77
“79

.81

.83

.85

.87

.89

.91
●93
●95

:Z

1.00

a

0.4128
.4062
.4019
.3972
.3920

.3870

.38u
●3757
.3693
.3630

.3562

.3498

.3415
93338
.3256

.3170
;;07’;

.2870

.2760

.2639

.25M

.2370

.2220

.2051

.1866

.1655

.1404

.~96

.0638

.0000

TTzF[

1.000
.946
.893
.845
.800

.758

.720

.683

.648

.616

.584

.556

.525

.49&1

.4720

.4466
JW3
.3969
93730
.3495

.3257

.3023

.2789

.2532

.2306

.20~

.178!)

.1478

.1130

.0644

0.000
.806

1.120
1.344
1.529

1.682
1.816
1.946
2.061
2.172

2.275
2.379
2.490
2.599
2.710

2.824
2.946
3.080
3.231
3*395

3.586
3●799
4.051
4.352
4.740

~ .240
5.945
7.04
9.08

15.67

●0000 I w
——

90°
7105‘
63°15‘
57°37‘
53°5‘

49017t
. 46% ‘
4305‘
40024‘
38021

35044‘
33047‘
31%0‘
29°52 ‘
28°10‘

26°32’
24°56‘
23°22’
21°53‘
20°28 t

190
17°36‘
16°12‘
14°48‘
ly20 ‘

lloy3 ‘
1o015‘
8°30f
6030‘
3°42‘ .

.
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TABLEII

> S)IUCVEIOCI?!5a,~, XHIKURY QUM?lIITYO1’CAWOTATIOH Q
~

ANDMACHANGIE a AS ITIN~IONSOF THETEIOCITYMUM! q

FcRlc .1.18

0.287
.30
●w
.34
.36
.38

.40

.42

.44

.46

.48

.50 -

.52

:%
.58

.60

.62

:2
.68

.70

.72
;;;

.78

I

1.00 I

O.2i3T4
.2862
.28k3
.282X
.2T36
.2775

2750
.q’24
.2693
.2663
.2633

.2598
,.2563
.2 0
.2&
.2445

.2400

.2354

.2304

.2254

.2200

.2142

.2081

.2017

.1949
●m

.I.eoo

.1717

.ld27

.153i

.1425

JL308
.SL76
.1o23
.0841
.0597

1.0000
●H
●W
.830
●777
9730

.688

.649

.6x?
95795
.%9

.5195

.4932

.4686

:~8

.4000

.3800

.36Q2

.3417

.3236

.3061

.2891

.2722

.2563

.2406

.2250

.2093

.1938

.1781

.1620

.1454

.Y278

.1088

.0876

.0609

0●oo
1.048
1.610
l.~
2.251
2.462

2.640
2.793
2.936
3.058
3.172

3.288
3.397
3.491
3.608
3.710

3.819
3●931
4.Om
4.3.68
k.3oo

4.447
4.601
4.~o
4.961
5.17

5.41
5.70

%
6.92

;.:;

9:72
3L84
16.74

m

90°
7&J :

%05 ‘
5P
@55 ‘

43%5 ‘
40’?25‘
37%2 ‘
35%28;
33°17‘

31°20‘
29°33‘
27°56‘
26’?21‘
24057‘

23°34 t
22?20 ‘
2iO12i
19Y8 f
fio53*

17%0 ‘
16°49‘
15°48‘
14°52‘
13°55‘
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LmBr.EIII

mEssuREp ItEmEmD T!oTEIE!rANK

FMESURE P. AS A FUIWTIOI!i W

!cmvlm)oI!iTAMoum q

~
P/Po P/P.

K = U!oq K = 1.3.8

0.30 0.5388
.kg!$?k

:$ u .4467
.36 .4024
.38 ●3597

.40

.42
.3190

0.5100 .2800
.4741 .2440

:% .43* .2102
.48 .4030 .1796

.50 .3686 ‘ &51;

.52 93350

.54 .3023 .m18

.56 .2 10
T

::C)9
.58 .2U)

.2127 .0536
:2 :l@;
.64

.0416

.0316
.66 ●1373 .0235
.68 .1161 .0171

.70 .0966 .OI.21
●72 .0791 .0083
.74 .0638 .0055
.76 .0502 .0035
.78 .0386 .0021

.& .0289 .Oou
.0207

:E
.0007

.0144
.86

.0003
.mgh

.88
.0002

.0057 .Ooo1

.w32 .Oooo
:F .oo~ .Oooo
.94 .0006
●96

.0000
.0002 .Oooo

.98 .0000 .00CM

1.00 .Oooo .0000

.

.

.

.
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Zii=zcz

(c)

prescribed by boundary condifion

Figure I
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b

~kiure 2,

&S z’

a’, ”

(c]

Figure 3. %
*The values inthis figure w@re illegj bk in the only available copy of the

orianal Germs repoti.
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/ 0,/83

0.227

0.227

<
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Figure 4.

Figure 6.

*The values in this figure were illegible in the only
original German report.
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